1,256 research outputs found

    The first-generation ABSORB BVS: awaiting dissolving outcomes

    Get PDF

    Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention

    Get PDF
    Numerous advances and innovative therapies have been introduced in interventional cardiology over the recent years, since the first introduction of balloon angioplasty, but bioresorbable scaffold is certainly one of the most exciting and attracting one. Despite the fact that the metallic drug-eluting stents have significantly diminished the re-stenosis ratio, they have considerable limitations including the hypersensitivity reaction to the polymer that can cause local inflammation, the risk of neo-atherosclerotic lesion formation which can lead to late stent failure as well as the fact that they may preclude surgical revascularization and distort vessel physiology. Bioresorbable scaffolds overcome these limitations as they have the ability to dissolve after providing temporary scaffolding which safeguards vessel patency. In this article we review the recent developments in the field and provide an overview of the devices and the evidence that support their efficacy in the treatment of CAD. Currently 3 devices are CE marked and in clinical use. Additional 24 companies are developing these kind of coronary devices. Most frequently used material is PLLA followed by magnesium

    Development of a polymer endovascular prosthesis and its implantation in porcine arteries

    Get PDF
    A polyethylene-terephthalate braided mesh stent has been developed for application in the (coronary) arterial tree. In vitro measurements showed that the radial pressure delivered by this device was in the same range as that of a stainless steel stent. Hysteresis-like behavior, however, occurred after constraining the polyester stent for a period of only 15 minutes on a delivery system for percutaneous implantation. This implies that the polymer stent must be mounted on this delivery system immediately before the placement procedure, and that either a diameter in the unconstrained condition must be selected, which is considerably larger than the diameter of the target vessel, or stent expansion has to be enhanced by balloon expansion. Taking into account the results obtained during the in vitro studies, we investigated the angiographic patency and histologic features after implantation of this polyester stent in peripheral arteries of pigs. In four animals eight stents were placed. Except for heparin during the implantation procedure only, antithrombotic or antiplatelet drugs were not administered. After 4 weeks repeat angiography was performed. Angiography revealed that five of the six correctly placed stents were patent. At autopsy, two additional patent stents proved to be located in the aortic bifurcation, probably due to failure of the delivery system. Quantitative assessment showed that the mean luminal diameters of the site of stent placement were 3.3 +/- 0.2 mm before, 3.2 +/- 0.2 mm immediately after, and 3.1 +/- 0.3 mm at 4 weeks after implantation. Histology demonstrated an inflammatory reaction of variable severity around the stent fibers. Quantitative histologic measurements showed that the thickness of the neointima was 114 +/- 38 mum after 4 weeks. In conclusion, polyester stents can be constructed with mechanical properties similar to stainless steel stents. Hysteresis-like behavior of polyester stents, however, influences the selection of the nominal stent diameter as well as the forces exerted to the vessel wall. After implantation in porcine peripheral arteries, five of six correctly placed stents were patent at 4 weeks. The extent of neointimal proliferation was similar to that observed after placement of metal stents in swine, despite the presence of a more pronounced inflammatory reaction

    Strut protrusion and shape impact on endothelial shear stress: insights from pre-clinical study comparing Mirage and Absorb bioresorbable scaffolds

    Get PDF
    Protrusion of scaffold struts is related with local coronary flow dynamics that can promote scaffold restenosis and thrombosis. That fact has prompted us to investigate in vivo the protrusion status of different types of scaffolds and their relationship with endothelial shear stress (ESS) distributions. Six Absorb everolimus-eluting Bioresorbable Vascular Scaffolds (Absorb, Abbott Vascular) and 11 Mirage sirolimus-eluting Bioresorbable Microfiber Scaffolds (Mirage, Manli Cardiology) were implanted in coronaries of eight mini pigs. Optical coherence tomography (OCT) was performed post-scaffold implantation and obtained images were fused with angiographic data to reconstruct the three dimensional coronary anatomy. Blood flow simulation was performed and ESS distribution was estimated for each scaffold. Protrusion distance was estimated using a dedicated software. Correlation between OCT-derived protrusion and ESS distribution was assessed for both scaffold groups. A significant difference was observed in the protrusion distances (156 ± 137 µm for Absorb, 139 ± 153 µm for Mirage; p = 0.035), whereas difference remained after adjusting the protrusion distances according to the luminal areas. Strut protrusion of Absorb is inversely correlated with ESS (r = -0.369, p < 0.0001), whereas in Mirage protrusion was positively correlated with EES (r = 0.192, p < 0.0001). Protrusion distance was higher in Absorb than in Mirage. The protrusion of the thick quadratic struts of Absorb has a tendency to lower shear stress in the close vicinity of struts. However, circular shape of the less thick struts of Mirage didn't show this trend in creating zone of recirculation around the struts. Strut geometry has different effect on the relationship between protrusion and shear stress in Absorb and Mirage scaffolds

    Coronary fractional flow reserve measurements of a stenosed side branch: a computational study investigating the influence of the bifurcation angle

    No full text
    Background Coronary hemodynamics and physiology specific for bifurcation lesions was not well understood. To investigate the influence of the bifurcation angle on the intracoronary hemodynamics of side branch (SB) lesions computational fluid dynamics simulations were performed. Methods A parametric model representing a left anterior descending—first diagonal coronary bifurcation lesion was created according to the literature. Diameters obeyed fractal branching laws. Proximal and distal main branch (DMB) stenoses were both set at 60 %. We varied the distal bifurcation angles (40°, 55°, and 70°), the flow splits to the DMB and SB (55 %:45 %, 65 %:35 %, and 75 %:25 %), and the SB stenoses (40, 60, and 80 %), resulting in 27 simulations. Fractional flow reserve, defined as the ratio between the mean distal stenosis and mean aortic pressure during maximal hyperemia, was calculated for the DMB and SB (FFRSB) for all simulations. Results The largest differences in FFRSB comparing the largest and smallest bifurcation angles were 0.02 (in cases with 40 % SB stenosis, irrespective of the assumed flow split) and 0.05 (in cases with 60 % SB stenosis, flow split 55 %:45 %). When the SB stenosis was 80 %, the difference in FFRSB between the largest and smallest bifurcation angle was 0.33 (flow split 55 %:45 %). By describing the ΔPSB−QSB relationship using a quadratic curve for cases with 80 % SB stenosis, we found that the curve was steeper (i.e. higher flow resistance) when bifurcation angle increases (ΔP = 0.451*Q + 0.010*Q 2 and ΔP = 0.687*Q + 0.017*Q 2 for 40° and 70° bifurcation angle, respectively). Our analyses revealed complex hemodynamics in all cases with evident counter-rotating helical flow structures. Larger bifurcation angles resulted in more pronounced helical flow structures (i.e. higher helicity intensity), when 60 or 80 % SB stenoses were present. A good correlation (R2 = 0.80) between the SB pressure drop and helicity intensity was also found. Conclusions Our analyses showed that, in bifurcation lesions with 60 % MB stenosis and 80 % SB stenosis, SB pressure drop is higher for larger bifurcation angles suggesting higher flow resistance (i.e. curves describing the ΔPSB−QSB relationship being steeper). When the SB stenosis is mild (40 %) or moderate (60 %), SB resistance is minimally influenced by the bifurcation angle, with differences not being clinically meaningful. Our findings also highlighted the complex interplay between anatomy, pressure drops, and blood flow helicity in bifurcations

    Quantitative multi-modality imaging analysis of a fully bioresorbable stent: a head-to-head comparison between QCA, IVUS and OCT

    Get PDF
    The bioresorbable vascular stent (BVS) is totally translucent and radiolucent, leading to challenges when using conventional invasive imaging modalities. Agreement between quantitative coronary angiography (QCA), intravascular ultrasound (IVUS) and optical coherence tomography (OCT) in the BVS is unknown. Forty five patients enrolled in the ABSORB cohort B1 study underwent coronary angiography, IVUS and OCT immediately post BVS implantation, and at 6 months. OCT estimated stent length accurately compared to nominal length (95% CI of the difference: −0.19; 0.37 and −0.15; 0.47 mm2 for baseline and 6 months, respectively), whereas QCA incurred consistent underestimation of the same magnitude at both time points (Pearson correlation = 0.806). IVUS yielded low accuracy (95% CI of the difference: 0.77; 3.74 and −1.15; 3.27 mm2 for baseline and 6 months, respectively), with several outliers and random variability test–retest. Minimal lumen area (MLA) decreased substantially between baseline and 6 months on QCA and OCT and only minimally on IVUS (95% CI: 0.11; 0.42). Agreement between the different imaging modalities is poor: worst agreement Videodensitometry-IVUS post-implantation (ICCa 0.289); best agreement IVUS-OCT at baseline (ICCa 0.767). All pairs deviated significantly from linearity (P < 0.01). Passing-Bablok non-parametric orthogonal regression showed constant and proportional bias between IVUS and OCT. OCT is the most accurate technique for measuring stent length, whilst QCA incurs systematic underestimation (foreshortening) and solid state IVUS incurs random error. Volumetric calculations using solid state IVUS are therefore not reliable. There is poor agreement for MLA estimation between all the imaging modalities studied, including IVUS-OCT, hence their values are not interchangeable

    Agreement of wall shear stress distribution between two core laboratories using three-dimensional quantitative coronary angiography

    Get PDF
    Wall shear stress (WSS) estimated in models reconstructed from intravascular imaging and 3-dimensional-quantitative coronary angiography (3D-QCA) data provides important prognostic information and enables identification of high-risk lesions. However, these analyses are time-consuming and require expertise, limiting WSS adoption in clinical practice. Recently, a novel software has been developed for real-time computation of time-averaged WSS (TAWSS) and multidirectional WSS distribution. This study aims to examine its inter-corelab reproducibility. Sixty lesions (20 coronary bifurcations) with a borderline negative fractional flow reserve were processed using the CAAS Workstation WSS prototype to estimate WSS and multi-directional WSS values. Analysis was performed by two corelabs and their estimations for the WSS in 3 mm segments across each reconstructed vessel was extracted and compared. In total 700 segments (256 located in bifurcated vessels) were included in the analysis. A high intra-class correlation was noted for all the 3D-QCA and TAWSS metrics between the estimations of the two corelabs irrespective of the presence (range: 0.90–0.92) or absence (range: 0.89–0.90) of a coronary bifurcation, while the ICC was good-moderate for the multidirectional WSS (range: 0.72–0.86). Lesion level analysis demonstrated a high agreement of the two corelabls for detecting lesions exposed to an unfavourable haemodynamic environment (WSS > 8.24 Pa, κ = 0.77) that had a high-risk morphology (area stenosis > 61.3%, κ = 0.71) and were prone to progress and cause events. The CAAS Workstation WSS enables reproducible 3D-QCA reconstruction and computation of WSS metrics. Further research is needed to explore its value in detecting high-risk lesions
    corecore